6-7-Dimethoxy-4-methylcoumarin suppresses pro-inflammatory mediator expression through inactivation of the NF-κB and MAPK pathways in LPS-induced RAW 264.7 cells
نویسندگان
چکیده
In this study, we investigated the ability of 6,7-dimethoxy-4-methylcoumarin (DMC) to inhibit lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators in mouse macrophage (RAW 264.7) cells, and the molecular mechanism through which this inhibition occurred. Our results indicated that DMC downregulated LPS-induced nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, thereby reducing the production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 cells. Furthermore, DMC suppressed LPS-induced production of pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. To elucidate the mechanism underlying the anti-inflammatory activity of DMC, we assessed its effects on the mitogen-activated protein kinase (MAPK) pathway and the activity and expression of nuclear transcription factor kappa-B (NF-κB). The experiments demonstrated that DMC inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. In addition, it attenuated LPS-induced NF-κB activation via the inhibition of IκB-α phosphorylation. Taken together, these data suggest that DMC exerts its anti-inflammatory effects in RAW 264.7 cells through the inhibition of LPS-stimulated NF-κB and MAPK signaling, thereby downregulating the expression of pro-inflammatory mediators.
منابع مشابه
Gambogic acid inhibits LPS-induced macrophage pro-inflammatory cytokine production mainly through suppression of the p38 pathway
Objective(s): In traditional Chinese medicine, gamboge can detoxify bodies, kill parasites, and act as a hemostatic agent. Recent studies have demonstrated that gambogic acid (GBA) suppressed inflammation in arthritis, and also presented antitumor effect. Thus, this study investigated the new biological properties of GBA on macrophages.Materials and Methods: RAW 264.7 cells were pretreated with...
متن کاملSalicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-κB and JNK activation in RAW 264.7 macrophages
We isolated the phenolic glucoside salicortin from a Populus euramericana bark extract, and examined its ability to suppress inflammatory responses as well as the molecular mechanisms underlying these abilities, using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Salicortin inhibited iNOS expression and the subsequent production of NO in a dose-dependent manner in the LPS-stimulated RAW 2...
متن کامل2-Phenylnaphthalene Derivatives Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Mediators by Downregulating of MAPK/NF-κB Pathways in RAW 264.7 Macrophage Cells
The anti-inflammatory pharmacological effect of eight 2-phenylnaphthalenes (PNAP-1-PNAP-8) on lipopolysaccharide (LPS)-induced RAW 264.7 (a mouse cell line) was investigated. Among them, 6,7-dihydroxy-2-(4'-hydroxyphenyl)naphthalene (PNAP-6) and 2-(4'-aminophenyl)-6,7-dimethoxynaphthalene (PNAP-8) exhibited the best anti-inflammatory activity in this study. PNAP-6 and PNAP-8 not only significan...
متن کاملAnti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages
PURPOSE The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. METHODS We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO). Pro-inflammatory and anti-i...
متن کاملSaikosaponin A mediates the inflammatory response by inhibiting the MAPK and NF-κB pathways in LPS-stimulated RAW 264.7 cells
Saikosaponin A (SSA) is a major triterpenoid saponin isolated from Radix bupleuri (RB), a widely used Chinese traditional medicine to treat various inflammation-related diseases. The aim of this study was to investigate the anti-inflammatory activity, as well as the molecular mechanism of SSA in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In this study, we demonstrated that SSA markedl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014